Unit 3 Modeling Atomic Structure

Mr. Maxwell

PACS

January 26, 2025

æ

・ロト ・四ト ・ヨト ・ヨト

The

is the number of

in the nucleus of an atom.

A D N A B N A B N A B N

Mr. Maxwell (PACS)

æ

The atomic number is the number of

in the nucleus of an atom.

< □ > < 同 > < 回 > < 回 > < 回 >

э

The atomic number is the number of protons in the nucleus of an atom.

< □ > < 同 > < 回 > < 回 > < 回 >

э

The the total number of and in the nucleus of an atom.

э

< □ > < □ > < □ > < □ > < □ >

The mass number the total number of and in the nucleus of an atom.

э

A D N A B N A B N A B N

The mass number the total number of protons and in the nucleus of an atom.

э

The mass number the total number of protons and neutrons in the nucleus of an atom.

э

イロト イヨト イヨト

Hydrogen

 $^{1}\mathrm{H}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Hydrogen

 $^{1}\mathrm{H}$

What does the 1 mean?

3

¹H

What does the 1 mean?

1 is the total number of neutrons and protons.

э

・ロト ・四ト ・ヨト ・ヨト

Helium

 4_2 He

æ

▲□▶ ▲圖▶ ▲園▶ ▲園▶

 $_2^4\mathrm{He}$

What does the 4 mean?

3

<ロト < 四ト < 三ト < 三ト

 $_2^4\mathrm{He}$

What does the 4 mean? 4 is the total number of neutrons and protons.

æ

< □ > < □ > < □ > < □ > < □ >

 $^4_2\mathrm{He}$

What does the 4 mean? 4 is the total number of neutrons and protons. What does the 2 mean?

э

$^4_2\mathrm{He}$

What does the 4 mean? 4 is the total number of neutrons and protons. What does the 2 mean? 2 is the number of protons.

э

< □ > < 同 > < 回 > < 回 > < 回 >

Lithium

 $^7_3\mathrm{Li}$

・ロト ・四ト ・ヨト ・ヨト 三臣

How many protons does Lithium have?

2

<ロト < 四ト < 三ト < 三ト

How many protons does Lithium have? 3

2

<ロト < 四ト < 三ト < 三ト

How many protons does Lithium have? 3 How many neutrons?

э

How many protons does Lithium have? 3 How many neutrons? 7-3 =

э

How many protons does Lithium have? 3 How many neutrons? 7-3=4

э

The Great Dane

The Bohr Model - Bohr proposed that an atom was a nucleus with electrons "orbiting" in different

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

The Great Dane

The Bohr Model - Bohr proposed that an atom was a nucleus with electrons "orbiting" in different energy levels.

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

7/13

Electrons can only have certain energy values known as

э

Electrons can only have certain energy values known as energy levels

э

イロン 不聞 とくほとう ほとう

The electrons closest to the nucleus have the further from away have energy.

energy, while those

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The electrons closest to the nucleus have the lowest energy, while those further from away have energy.

The electrons closest to the nucleus have the lowest energy, while those further from away have higher energy.

The electrons closest to the nucleus have the lowest energy, while those further from away have higher energy.

The electrons closest to the nucleus have the lowest energy, while those further from away have higher energy.

The electrons closest to the nucleus have the lowest energy, while those further from away have higher energy.

э

Energy Levels and the Periodic Table

Group	▶ 1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period	•																		Noble gases
														Some	eleme	nts ne	ar		
	1													the dashed staircase are					2
Nonmetals	н													sometimes called metalloids					He
Metals ,	3	4												5	6	7	8	9	10
4	Li	Be												В	С	Ν	0	F	Ne
	, 11	12					Ti	ransitio	on met	als				13	14	15	16	17	18
	Na	Mg		(sometimes excluding group 12)											Si	Р	S	CI	Ar
,	19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	ĸ	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
4	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb) Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
6	55	56	La to Vh	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	Latorio	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7	87	88	Ac to No	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra	710 10 110	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
	e.	block	f-block	d-block										p-block (excluding He)					
	3 5/00K										p-block (excluding ric)								
	(P	40110)																	
Lanthanio			anthanides	57	58	59	60	61 Dm	62	63	64	65 Th	66 Du	67	68	69 Ten	70 Vh		
					Ce	Pr	NO	P-m	Sm	EU	Ga	10	Dy	r10	Er	101	TD		
Actinides				- 89	90	- 91	92	93	94	95	96	97	- 98	- 99	100	101	102		

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶
January 26, 2025

2

Energy Level of Hydrogen

Energy Level of Hydrogen

January 26, 2025 11 / 13

3

Energy Level of Lithium

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Energy Level of Lithium

Energy Level of Lithium

January 26, 2025

12/13

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2